Shape transitions and triaxiality in neutron-rich Y and Nb isotopes Y.X. Luo^{1,2}, J.O. Rasmussen², J.H. Hamilton¹, A.V. Ramayya¹, J.K.Hwang¹, S.J. Zhu¹, P.M. Gore¹, S.C. Wu², I.Y. Lee², P. Fallon², T.N. Ginter², A.V. Daniel¹, M.A. Stoyer², R. Donangelo², and A. Gelberg³ ¹ Physics Department, Vanderbilt University, Nashville, TN 37235, USA ²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 ³ Inst. fuer Kernphysik, Universitaet zu Koeln, Germany Intensive studies of shape transitions and shape coexistence have been carried out in neutron-rich even-even nuclei with A~100^[1, 2]. Onset of deformation, identical bands, shape evolution and coexistence including triaxiality are observed in neutron-rich Sr-Zr-Mo isotopes. Recently, triaxial deformation in Mo and axially-symmetric shape in Zr isotopes were suggested by Hua et al.^[3] However, there is a lack of data for odd Z nuclei. Following our work on Rh (Z=45)^[4] and Tc (Z=43)^[5] we are now focusing our attention on Y (Z=39) and Nb (Z=41) isotopes. New level schemes of $^{99,\,101}$ Y and $^{101,\,105}$ Nb are proposed based on our fission gamma data accumulated with Gammasphere in 2000. Bands of $\pi5/2^+[422],\,\pi5/2^-[303]$ and $\pi3/2^-[301]$ are observed and extended to show spectroscopic information concerning nuclear shapes in this important 0dd-Z region. It is suggested that quadrupole deformation peaks at N = 60 in Y (Z=39) isotopic chain and at N = 62 in Nb (Z=41) chain. The deformation decreases with increasing Z, following the same trend in neighboring even-Z nuclei. Very small signature splitting is observed in Y isotopes, in contrast to the very large ones in Tc and Rh isotopes^[4, 5] (see Fig. 1), the latter being attributed to the triaxial deformation in Tc and Rh isotopes. A pronounced difference in J⁽¹⁾ and J⁽²⁾ is also observed between Y and Tc, Rh isotones, similar to what observed in Zr and Mo^[3]. The difference in band crossing frequencies between Zr and Mo isotopes were accounted for by triaxial degree of freedom in Mo and axially symmetry shape in Zr isotopes. A band built on an excited $11/2^+$ state with excitation as high as 1654.7 keV in 99 Y predominantly feeds the $7/2^+$ state of the yrast band, in contrast to the low excitation and very small E2 strength in Rh and Tc cases $^{[4, 5]}$. The latter was attributed to triaxiality in Rh and Tc isotopes $^{[4, 5]}$. All the observations provide evidences of an axially-symmetric shape in Y isotopes. However, Nb isotopes, having intermediate values, are transitional regarding γ deformation. FIG. 1: Level systematics of ground state band in N = 6062 isotones with odd Z = 39 - 45. ## REFERENCES - [1] J. Skalski et al., Nucl. Phys. A617, 282(1997). - [2] J.H. Hamilton, Treatise on Heavy Ion Science, Vol. 8, Allan Bromley, Ed., New York, Plenum Press, (1989), p. 2. - [3] H. Hua, et al., Phys. Rev. C69, 014317(2004). - [4] Y.X. Luo et al., Phys. Rev. C69, 024315(2004). - [5] Y.X. Luo et al., to be published.